Real-time product quality control for batch processes based on stacked least-squares support vector regression models

نویسندگان

  • Shuning Zhang
  • Fuli Wang
  • Dakuo He
  • Runda Jia
چکیده

A novel real-time final product quality control method for batch operations based on stacked leastsquares support vector regression models (stacked LSSVR) is proposed. It combines midcourse correction (MCC) and batch-to-batch control. To enhance the model prediction accuracy and generalization capability, a stacked LSSVR approach is presented. Quality control is achieved by predicting the final product quality using stacked LSSVR models and adjusting process variables at some pre-specified decision points. Then a decision is made on whether or not control action is taken at every decision point. Once the control action is expected, the manipulated variable values are calculated and the control action is taken to bring the off-spec product quality back to the target. Then a batch-to-batch control is used to overcome the model plant mismatches and unmeasured disturbances. At last, the proposed modeling and quality control strategy is illustrated on a simulated batch reactor. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting Weighted Partial Least Squares for Batch Process Quality Prediction

In batch processes, end-product qualities are cumulatively determined by variable dynamic trajectories throughout each batch. Meanwhile, batch processes are inherently time-varying, implying that process variables may have different impacts on end-qualities at different time intervals. To take both the cumulative and the time-varying effects into better consideration for quality prediction, a b...

متن کامل

Determination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression

A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination...

متن کامل

A Multiway Gaussian Mixture Model based Adaptive Kernel Partial Least Squares Regression Approach for Inferential Quality Predictions of Batch Processes

Soft sensor technique has become increasingly important to provide reliable on-line measurements, facilitate advanced process control and improve product quality in process industries. The conventional soft sensors are normally single-model based and thus may not be appropriate for processes with shifting operating conditions or phases. In this study, a multiway Gaussian mixture model (MGMM) ba...

متن کامل

Batch-to-Batch Iterative Learning Control of a Fed-batch Fermentation Process Using Incrementally Updated Models

Batch-to-batch iterative learning control of a fed-batch fermentation process using batchwise linearised models identified from process operation data is presented in this paper. Due to model-plant mismatches and the present of unknown disturbances, off-line calculated control policy may not be optimal when implemented to the real process. The repetitive nature of batch process allows informati...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Chemical Engineering

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2012